Does eBay’s Second Chance Offer Policy Benefit Sellers?∗

Rodney J. Garratt† and Thomas Tröger‡

April 12, 2013

Abstract

Second chance offers are used on eBay to sell additional units to losing bidders at their losing bids. If the seller marginal cost is constant, then eBay’s second chance offer policy implements the optimal auction. This would not be true if sellers had more flexibility in pricing second chance offers. If the seller has increasing marginal costs, then the second chance offer feature of eBay auctions is not optimal and may reduce seller revenue. Our analysis suggests that some sellers would like to publicly opt out of eBay’s second chance offer feature, an option eBay does not currently allow.

JEL codes: D44, D82

Keywords: multi-unit auction, second chance offer, eBay, optimal auction

∗We thank John Wooders and seminar participants at the 2012 Southwest Economic Theory meetings in San Diego and the University of Western Ontario for helpful comments. Financial support from the German Science Foundation (DFG) through SFB/TR 15 “Governance and the Efficiency of Economic Systems” and NSF grant SES-0851357 is gratefully acknowledged.

†Department of Economics, University of California, Santa Barbara, CA 93106; garratt@econ.ucsb.edu

‡Department of Economics, University of Mannheim, L7, 3-5 68131 Mannheim, Germany; troeger@uni-mannheim.de
1 Introduction

eBay has become one of the most important market places for retail goods worldwide. Yet important aspects of the strategic bidding incentives in eBay auctions remain unexplored. eBay’s main sales mechanism is closely related to a second-price auction, which has been extensively studied. There are, however, important dissimilarities to a standard second-price auction. In particular, the eBay auction allows the seller to sell multiple units of the same good.\(^1\) While the seller is committed to sell the first unit to the highest bidder at essentially the second-highest bid, she also retains the option to make “second chance offers”. She may offer a second unit to the second-highest bidder at the second-highest bid, a third unit to the third-highest bidder at the third-highest bid, and so on.

We examine the impact of eBay’s second chance offer policy on bidder behavior and seller revenue. We consider a setting in which buyers have symmetric independent private values for a single unit.\(^2\) We allow any number of bidders and any distribution over values. The seller offers an initial unit for sale using a second-price auction and may set a minimum bid. The seller may or may not have a second unit for sale, and the bidders may be uncertain about the seller’s endowment. After the auction for the initial unit, a seller who possesses a second unit, decides whether to make a second chance offer to the second-highest bidder at her second-highest bid. For these auctions, there exists a symmetric and strictly increasing bidding equilibrium. The seller makes a second chance offer if and only if the second-highest bid exceeds her opportunity cost of selling the additional units.

We show that if the marginal cost of each unit provided by the seller is constant, then eBay’s second chance offer policy implements the optimal auction. Under the assumption that the environment is regular in the sense of Myerson (1981), the seller should allocate her units to the bidders in decreasing order of their valuations, as long as virtual valuations exceed marginal costs (Maskin and Riley, 1989). Hence, the seller can achieve her optimal allocation by using the eBay auction with second chance offers by choosing the minimum

\(^1\) Another important difference is that eBay allows sequential bids. The sequentiality, however, does not play a crucial role in the private-value environments that we consider.

\(^2\) The symmetry assumption fits well to the largely anonymous trading environment in which eBay auctions take place. Also, the assumption that each buyer demands at most one unit is reasonable in many contexts.
bid so that its virtual valuation equals her marginal cost and making all second chance offers that are profitable following the auction.

Interestingly, optimality of the second chance offer policy would not hold if eBay allowed sellers more flexibility in pricing second chance offers. A different auction format in which the seller is not required to make second chance offers to losing bidders at their losing bids, but can freely choose second chance offer prices after observing bids in the auction (Joshi et al., 2005, Salmon and Wilson, 2008) will typically reduce seller revenue because of the resulting distortion of the allocation away from the optimal one.

We show that optimality of eBay auctions with second chance offers is also lost if the seller’s marginal cost increases for additional units. For example, suppose that the seller has two units of a rare collectible item, and her cost arises from the lost opportunity of selling in a different market. It may well be that, due to downward sloping demand in the other market, her cost of selling the first unit in the auction is considerably smaller than her cost of selling the second unit in the auction. Then, the opportunity to make second chance offers can harm her. In fact, we are able to show that, if the seller’s marginal cost function is sufficiently steep, then the opportunity to make second chance offers reduces seller revenue below the level she could obtain from optimally selling a single unit without the opportunity to make second chance offers on additional units.

Second chance offers may reduce seller revenue because the anticipation of a second chance offer reduces the bidders’ incentives to bid aggressively. Because the seller cannot commit to a minimum bid threshold for second chance offers, the bid reduction effect can dominate so that the seller’s overall profit is reduced. In order to achieve the seller optimal allocation in environments with increasing marginal costs, a separate minimum bid is needed for selling the second unit (possibly higher than the minimum bid for the first unit), another minimum bid for the third unit, and so on. Adapting the eBay rules accordingly would yield an optimal mechanism, however this would require eBay’s enforcement of the minimum bid schedule. Without third-party enforcement or some other commitment mechanism, optimum revenue is not obtainable. We conclude that sellers should be wary about the possibility that buyers anticipate second chance offers and that it may be advantageous for a seller to acquire
a reputation for not making second chance offers.\(^3\)

Previous authors have examined other features of eBay auctions. Roth and Ockenfels (2002, 2006) and Ariely et al. (2005) examine implications of the “hard close” aspect of eBay auctions on bidder behavior.\(^4\) Bajari and Hortaçsu (2003) examine bidding behavior and the use of minimum bids and secret reserves by sellers in a sample of eBay coin auctions. Budish (2008) and Budish and Zeithammer (2011) examine the efficiency properties of eBay policies on auction sequencing and information revelation. Reynolds and Wooders (2009) examine how eBay’s implementation of the “buy-it-now” feature affects seller revenue.

As far as we know, Joshi et al. (2005) and Salmon and Wilson (2008) are the only papers which address the topic of second chance offers in eBay-style auctions. However, as mentioned above, both of these works consider a generalized second-stage mechanism in which the seller is not restricted to charge the losing bidder’s stage-one bid. This allows the seller to use the information contained in losing bidders’ bids in order to price-discriminate. A second chance offer on eBay, in contrast, has to equal the second-highest bid, preventing outcome-dependent price discrimination.

Our analysis assumes bidders are aware of the possibility that the seller may have a second unit and make a second chance offer. If bidders are unaware of this possibility, then it is, of course, trivial that second chance offers are beneficial to the seller. Under the resulting “value-bidding” equilibrium, an unsuspecting losing bidder who receives a second chance offer pays her full value to the seller and receives no surplus.

2 Model and results

Consider a seller who has one or two units of an indivisible good. The seller has quasi-linear risk-neutral preferences. Her cost of selling one unit is denoted \(c_1 \geq 0\); her marginal cost of selling the second unit (if she possesses two units) is denoted \(c_2 \geq c_1\). Let \(\lambda > 0\) denote the probability that the seller has two units. There are \(n \geq 2\) potential buyers with single-unit

\(^3\)As it stands, eBay does not allow sellers to publicly opt out of the second chance offer mechanism. Our results suggests some sellers would like to.

\(^4\)An auction with a hard close ends at a pre-specified time regardless of bidding activity.
demand and quasi-linear risk-neutral preferences. Buyer i’s ($i = 1, \ldots, n$) valuation for the good is independently distributed according to a cumulative distribution function F with positive and Lipschitz continuous density f on $[0, 1]$. Let X_i denote the random variable for buyer i’s value.

The buyers participate in a variant of a second-price auction in which the seller may offer her second unit at the second-highest bid to the second-highest bidder (“second chance offer”). The seller can announce a minimum bid $r \geq 0$. The buyers/bidders expect the seller to make a second chance offer if and only if the second-highest bid is not smaller than some number $p \geq r$. For the purposes of describing the symmetric equilibrium bidding strategy we place no restrictions on the seller’s threshold choice, except that it does not depend on the observed bids. In what follows we will explore how the seller’s ability to pre-commit to a threshold affects revenue.

Our analysis is based on the following bidding equilibrium.

Proposition 1. There exists a symmetric bidding equilibrium. All types $x < r$ stay out of the auction. The equilibrium bid function $\beta : [r, 1] \rightarrow [r, 1]$ is strictly increasing. All types $x \in [r, p]$ bid their values $\beta(x) = x$, and, for all $x \in [p, 1]$,

$$
0 = (x - \beta(x))(n - 1)F(x)^{n-3}f(x)(F(x)(1 - \lambda) + \lambda(1 - F(x))(n - 2)) - \lambda(n - 1)(1 - F(x))F(x)^{n-2}\beta'(x).
$$

(1)

All types $x \in (p, 1)$ submit bids below their values, $\beta(x) < x$.

Any second chance offer is accepted.

The proof combines standard equilibrium arguments for first-price and second-price auctions and is relegated to the Appendix.

Using (1), one can show that, the higher the probability buyers put on the event that the seller has two units, the less they will bid. This reveals a fundamental tradeoff: while second chance offers allow the seller to sell additional units of her good, they also reduce the bidders’ incentives to compete.
Because all bidders use the same strictly increasing bid function, we have the following

Corollary 1. In equilibrium, one unit of the good is assigned to the buyer with the highest valuation, as long as this valuation is at least \(r \); with probability \(\lambda \), a second unit is assigned to the buyer with the second-highest valuation, provided that valuation is not lower than \(p \).

Recall from Myerson (1981) that the environment is regular if the virtual valuation function \(\psi(x) = x - (1 - F(x))/f(x) \) is strictly increasing. The following result provides an important benchmark.

Corollary 2. Suppose the environment is regular. Then the second-price auction with the minimum bid \(r = \psi^{-1}(c_1) \) and the second chance offer threshold

\[
p = \psi^{-1}(c_2)
\]

(2)

yields the profit-maximizing allocation for the seller.

Proof. If it were commonly known that the seller has only one unit (\(\lambda = 0 \)), then optimality would follow from Myerson (1981). If it is commonly known that the seller has two units (\(\lambda = 1 \)), then optimality follows from Maskin and Riley (1989). From the irrelevance result of Mylovanov and Tröger (2012), these allocations remain optimal if the buyers are uncertain about the seller’s endowment.

The fundamental problem with second chance offers is that the seller cannot commit to the threshold (2). Instead, the buyers expect the seller to make a second chance offer whenever it is profitable,

\[
p = \max\{c_2, r\}.
\]

(3)

In environments in which the seller’s ex-ante profit-maximizing threshold (2) differs from her interim-optimal threshold (3), the second-price auction with second chance offer does not yield the seller-optimal allocation.
Corollary 3. In a regular environment, the second-price auction with optimal minimum bid
\(r = \psi^{-1}(c_1) \) and interim-optimal second-chance offer threshold (3) is a profit-maximizing
mechanism if and only if \(c_1 = c_2 \).

Proof. If \(c_1 = c_2 \) and \(r = \psi^{-1}(c_1) \), then \(r = \psi^{-1}(c_2) \geq c_2 \). Thus (3) dictates that \(p = \psi^{-1}(c_2) \), which is condition (2) in the profit maximizing mechanism described by Corollary
2. To see the “only-if” part, observe that profit-maximization requires that \(r = \psi^{-1}(c_1) \) and
(2). Hence, \(p > c_2 \), implying \(p = r \) by (3). Thus \(\psi^{-1}(c_2) = \psi^{-1}(c_1) \), implying \(c_2 = c_1 \). QED

Elsewhere (Joshi et al., 2005, Salmon and Wilson, 2008) a different second chance offer
mechanism is analyzed, in which the seller is free to make any second chance offer, as a
take-it-or-leave-it price, after seeing the second-highest bid. In a regular environment in
which marginal costs are constant, the freedom to choose a price can never be advantageous
for the seller. A buyer would get no rent from the trade of the second unit if her bid revealed
her value; as a result, the buyer typically has an incentive to randomize her bidding (cf.
Salmon and Wilson, 2008), so that the resulting final allocation is distorted away from the
seller-optimal allocation.

2.1 The costs of second chance offers

Corollary 3 establishes that the second-price auction with second chance offers is not an
optimal mechanism for the seller whenever \(c_2 \) is larger than \(c_1 \). In fact, in cases where the
marginal cost function is increasing, the ability to make second chance offers can actually
harm the seller. Here we show that if the marginal cost function is sufficiently steep, a
standard second-price auction without second chance offers is better for the seller.

Applying standard envelope arguments (e.g., Milgrom and Segal, 2002), the seller’s ex-
pected profit from a second-price auction with minimum bid \(r \) and second chance offer
threshold $p \geq r$ is given by

\[\Pi^{SCO}(r, p) = \int_r^1 (\psi(y) - c_1) f^{(1)}(y) dy + \lambda \int_p^1 (\psi(y) - c_2) f^{(2)}(y) dy, \tag{4} \]

where

\[f^{(1)}(x) = nF(x)^{n-1} f(x), \quad f^{(2)}(x) = n(n-1)F(x)^{n-2}(1-F(x))f(x) \tag{5} \]

are the densities of the highest and second-highest order statistics of the random variables X_1, \ldots, X_n.

For comparison, the seller’s expected profit from a standard second-price auction with minimum bid r is given by

\[\Pi^{SPA}(r) = \int_r^1 (\psi(y) - c_1) f^{(1)}(y) dy. \tag{6} \]

Our result is that, if the marginal cost of the second unit is sufficiently close to the highest possible valuation, then the opportunity to make a second chance offer is harmful for the seller, given that she uses her interim-optimal threshold (3). This holds for arbitrary minimum bids, arbitrary numbers of buyers, and arbitrary distributions of valuations.\(^5\)

Proposition 2. Consider any minimum bid $r < 1$. If $c_2 < 1$ is sufficiently close to 1, and p is given by (3), then $\Pi^{SCO}(r, p) < \Pi^{SPA}(r)$.

Comparing (4) and (6), and using that $p = c_2$ if c_2 is close to 1, we have to show that

\[\int_{c_2}^1 (\psi(y) - c_2) f^{(2)}(y) dy < 0. \tag{7} \]

\(^5\)Note that we keep the minimum bid r fixed. Alternatively, one may assume that for all c_2, the minimum bid is chosen to maximize $\Pi^{SPA}(r)$ in the case of the second-price auction without second chance offers and a potentially different minimum bid is chosen to maximize $\Pi^{SCO}(r, p)$, with p given by (3), when second chance offers are allowed. Because, in either case, the optimal r stays bounded away from 1 as $c_2 \to 1$, the proof still goes through.
The integrand is negative if \(y < \psi^{-1}(c_2) \), and positive if the opposite inequality holds. At \(y \) close to 1, \(\psi \) is approximately linear with slope 2. Hence, if the density \(f^{(2)}(y) \) were constant in this area, then the integrations over the two sub-areas would cancel out. However, because \(f^{(2)} \) is the density for the second-highest (rather than highest) order statistics, it is decreasing at all points close to 1, implying that the integration over the sub-area in which the integrand is negative dominates (cf. Figure 1).

![Graph](image)

Figure 1: In the dotted area, the marginal cost of selling the second unit exceeds the buyer’s virtual valuation; this represents the cost of making a second chance offer. In the striped area, the buyer’s virtual valuation exceeds the marginal cost of selling the second unit; this represents the benefit of making a second chance offer. If \(c_2 \) is close to 1, the left area’s negative contribution to the integral (7) dominates the right area’s negative contribution because the density of the second-highest order statistics is decreasing at points \(y \) close to 1.

A formal proof can be found in the Appendix. The technique of the proof builds on the idea that each type distribution is approximately uniform in any small interval, such as at values close to 1, together with the fact that the desired conclusion holds for the uniform distribution.\(^6\)

\(^6\)Related approximation techniques, applied to values close to 0, are used in Garratt and Tröger (2006, Section 5) to show that speculation can increase seller revenue in second-price auctions, and in Garratt, Tröger, and Zheng (2009) to show that resale facilitates collusion in English auctions.
3 Illustration

Suppose \(n = 3 \) and \(F \) is uniform on \([0, 1]\). Figure 2 shows the percent increase or decrease in seller revenue that is created by the introduction of the second chance offer for two minimum bid and second chance offer threshold scenarios and two choices of \(\lambda \).\(^7\) The left panels of Figure 2 show that if an arbitrary reserve is chosen by the seller (we use the marginal cost of the first unit), then seller revenue is reduced by the introduction of the second chance offer. This shows that the requirements on \(c_2 \) implied by Proposition 2 can be very weak indeed. Here, seller revenue is reduced for all \(c_2 \geq c_1 \), although this is not true for larger \(n \). The right panels show that even when the seller is able to set an optimal minimum bid, seller revenue is reduced when the marginal cost of the second unit is high enough. This is the case mentioned in footnote 5. The figure shows that the seller can mitigate, but not eliminate, the potentially negative impact of the second chance offer by choosing an optimal minimum bid.

4 Appendix

Proof of Proposition 1. Consider a buyer (say, buyer 1) of type \(x \in [0, 1] \) who believes that everybody else uses the strictly increasing and continuous bid function \(\beta \) with \(\beta(r) = r \) and all types \(< r \) staying out. Her expected payoff from bidding \(b \in [r, \beta(1)] \) is

\[
\Pi(b, x) = E[1_{\max_{i \neq 1} \beta(X_i) \leq b}(x - \max_{i \neq 1} \beta(X_i))] + \lambda 1_{b \geq p}(x - b)(F_{1,n-1}^{1,n-1}(\beta^{-1}(b)) - F_{2,n-1}^{2,n-1}(\beta^{-1}(b))],
\]

where \(F_{k,n-1} \) denotes the c.d.f. for the \(k \)th largest among \(n - 1 \) values that are drawn i.i.d. according to \(F \).

For all types \(x \in [r, p] \) the expected payoff is maximized by value-bidding, for the same reason as in a standard second-price auction.

\(^7\)Details of the calculations are found in the appendix.
Figure 2: Levels are the percent increase or decrease in seller revenue that results from the introduction of a second chance offer to the second-price auction. SPA and SCO refer to second-price auction without and with a second chance offer, respectively. $r^* = (1 + c_1)/2$ is the optimal minimum bid for the second-price auction without a second chance offer. r^{**} is the minimum bid that maximizes $\Pi^{SCO}(r, \max\{r, c_2\})$, as defined in (15).

Consider then $x > p$. Any bid $b < p$ is suboptimal because $\Pi(b, x) < \Pi(p, x)$ for the same reason as in a standard second-price auction.
For any \(b \in [p, \beta(1)] \), we can write the expected payoff as

\[
\Pi(b, x) = F^{1,n-1}(r)(x - r) + \int_r^{\beta^{-1}(b)} (x - \beta(y))dF^{1,n-1}(y) + \lambda(x - b)(F^{1,n-1}(\beta^{-1}(b)) - F^{2,n-1}(\beta^{-1}(b)))
\]

\[
= F(r)^{n-1}(x - r) + \int_r^{\beta^{-1}(b)} (x - \beta(y))(n - 1)F(y)^{n-2}f(y)dy + \lambda(x - b)(n - 1)(1 - F(\beta^{-1}(b)))F(\beta^{-1}(b))^{n-2}.
\]

The payoff change from a marginal bid increase is

\[
\frac{\partial \Pi}{\partial b} = (\beta^{-1})'(b)(x - b)(n - 1)F(\beta^{-1}(b))^{n-2}f(\beta^{-1}(b))(1 - \lambda) + \lambda(x - b)(n - 1)(1 - F(\beta^{-1}(b)))(n - 2)F(\beta^{-1}(b))^{n-3}f(\beta^{-1}(b))(\beta^{-1})'(b) - \lambda(n - 1)(1 - F(\beta^{-1}(b)))F(\beta^{-1}(b))^{n-2}.
\]

Because this function is increasing in \(x \), the same argument as for a standard first-price auction shows that \(\Pi \) is quasi-concave in \(b \). Hence, to show the optimality of the bid \(b = \beta(x) \), it is sufficient to verify the first-order condition

\[
0 = \frac{\partial \Pi}{\partial b}\bigg|_{b = \beta(x)} = \frac{x - \beta(x)}{\beta'(x)}(n - 1)F(x)^{n-3}f(x)(F(x)(1 - \lambda) + \lambda(1 - F(x))(n - 2)) - \lambda(n - 1)(1 - F(x))F(x)^{n-2}.
\]

We have to solve the differential equation (1) for \(x \in [p, 1] \), with the boundary condition \(\beta(p) = p \). Because the differential equation is linear in \(\beta \) and \(\beta' \), a unique solution exists.

We use the equation (1) in order to show that \(\beta'(x) > 0 \) for all \(x \in (p, 1) \), implying that \(\beta \) is strictly increasing, thus justifying the use of the inverse above.

The differential equation (1) has the form \((x - \beta(x))h(x) = k(x)\beta'(x)\), where \(h(x) > 0 \).
and \(k(x) > 0 \) for all \(x \in [p, 1) \).

Fix any \(\overline{x} < 1 \). First we show that

\[
\arg \min_{x \in [p, \overline{x}]} x - \beta(x) = \{ p \}.
\]

(8)

Suppose otherwise. Then there exists \(y \in (p, \overline{x}] \) where \(x - \beta(x) \) is minimized, implying \(1 - \beta'(y) \leq 0 \) by the standard first-order condition (we write “\(\leq 0 \)” instead of “\(= 0 \)” to include the possibility of a minimum at the right boundary \(\overline{x} \)). Hence, \(\beta'(y) > 0 \). Thus, using the differential equation, \((y - \beta(y))h(y) = k(y)\beta'(y) > 0 \), implying \(y - \beta(y) > 0 \). Because \(y \) is a minimizer, we conclude that \(p - \beta(p) \geq y - \beta(y) > 0 \), a contradiction.

From (8) and \(p - \beta(p) = 0 \) it follows that \(x - \beta(x) > 0 \) for all \(x \in (p, 1) \). Hence, \(\beta'(x) > 0 \) by (1).

Proof of Proposition 2. First we show that

\[
\int_{c_2}^{1} (\psi(y) - (2y - 1)) f^{(2)}(y) dy = o((1 - c_2)^3),
\]

(9)

where \(o(x) \) stands for any function such that \(o(x)/x \to 0 \) as \(x \to 0 \).

To see (9), observe that

\[
\int_{c_2}^{1} (\psi(y) - (2y - 1)) f^{(2)}(y) dy = \int_{c_2}^{1} (\psi(y) - (2y - 1)) f(y) \frac{f^{(2)}(y)}{f(y)} dy
\]

\[
= \int_{c_2}^{1} (f(y)(1 - y) - (1 - F(y))) \frac{f^{(2)}(y)}{f(y)} dy.
\]

By the fundamental theorem of calculus, \(1 - F(y) = F(1) - F(y) \geq (1 - y) \min_{\xi \in [c_2, 1]} f(\xi) \).

Hence, we can continue

\[
\ldots \leq \int_{c_2}^{1} (f(y) - \min_{\xi \in [c_2, 1]} f(\xi))(1 - y) \frac{f^{(2)}(y)}{f(y)} dy
\]

\[
= (f(y') - \min_{\xi \in [c_2, 1]} f(\xi)) \frac{f^{(2)}(y')}{f(y')} \int_{c_2}^{1} (1 - y) dy
\]

13
for some \(y' \in [c_2, 1] \), by the mean value theorem. The last integral can be easily evaluated as

\[
\int_{c_2}^{1} (1 - y) \, dy = \frac{1}{2}(1 - c_2)^2. \tag{10}
\]

Moreover, using the Lipschitz constant \(L \) for \(f \),

\[
f(y') - \min_{\xi \in [c_2, 1]} f(\xi) \leq L(1 - c_2), \tag{11}
\]

and, using (5),

\[
\frac{f^{(2)}(y')}{f(y')} \leq n(n - 1)(1 - F(y')) \leq n(n - 1) \max_{\xi \in [c_2, 1]} f(\xi)(1 - c_2).
\]

Combining this with (10) and (11), we have an upper bound for the left-hand side of (9) that is \(o((1 - c_2)^3) \). A lower bound that is \(o(1 - c_2) \) is obtained in a similar way, showing (9).

Observe that \(f^{(2)} \) is Lipschitz continuous because \(f \) is Lipschitz continuous. Hence, for Lebesgue almost-every \(x \in [0, 1] \), the derivative \((f^{(2)})'(x) \) exists and, using standard differentiation rules, if \(n \geq 3 \),

\[
(f^{(2)})'(x) = n(n - 1)(1 - F(x))F^{n-3}(x)((n - 2)f(x)^2 + F(x)f'(x))
- n(n - 1)F^{n-2}(x)f(x)^2.
\]

Thus, because \(|f'(x)| \) is bounded by the Lipschitz constant for \(f \),

\[
(f^{(2)})'(x) \leq -\delta, \quad \text{where} \quad \delta \overset{\text{def}}{=} \frac{1}{2}n(n - 1)f(1)^2,
\]

for all \(x \) sufficiently close to 1. The same conclusion holds if \(n = 2 \).
Hence, if c_2 is sufficiently close to 1, then, for all y with $c_2 \leq y \leq \frac{c_2+1}{2}$,

$$f^{(2)}(y) - f^{(2)}(1 - (y - c_2)) = \int_{y}^{1-(y-c_2)} -(f^{(2)})'(x)dx \geq (1 - 2y + c_2)\delta. \quad (12)$$

Finally, we evaluate

$$\int_{c_2}^{1} (2y - 1 - c_2)f^{(2)}(y)dy = \int_{c_2}^{(c_2+1)/2} (2y - 1 - c_2)f^{(2)}(y)dy + \int_{(c_2+1)/2}^{1} (2y - 1 - c_2)f^{(2)}(y)dy$$

The change of variables $x = 1 - (y - c_2)$ in the second integral yields that

$$\int_{(c_2+1)/2}^{1} (2y - 1 - c_2)f^{(2)}(y)dy = \int_{c_2}^{(c_2+1)/2} (1 + c_2 - 2x)f^{(2)}(1 - (x - c_2))dx$$

Plugging this into the above evaluation yields

$$\int_{c_2}^{1} (2y - 1 - c_2)f^{(2)}(y)dy = \int_{c_2}^{(c_2+1)/2} (2y - 1 - c_2)f^{(2)}(y)\delta dy$$

$$\leq \int_{c_2}^{(c_2+1)/2} (2y - 1 - c_2)(1 - 2y + c_2)\delta dy$$

$$= -\int_{c_2}^{(c_2+1)/2} (1 - 2y + c_2)^2 dy \delta$$

$$= -\frac{1}{6}(1 - c_2)^3 \delta.$$

Combining this with (9), we conclude that

$$\int_{c_2}^{1} (\psi(y) - c_2)f^{(2)}(y)dy$$

$$= \int_{c_2}^{1} (\psi(y) - (2y - 1))f^{(2)}(y)dy + \int_{c_2}^{1} (2y - 1 - c_2)f^{(2)}(y)dy$$

$$< 0 \quad \text{if } c_2 \text{ is close to 1},$$
implying (7).

Calculations for figure 2. Optimal seller revenue of the second-price auction without second chance offers is given by

\[\frac{1}{2} - c_1 + \frac{1}{32} (1 + c_1)^4. \] (13)

The figures shown in the right panel require optimal seller revenue in the auction with second chance offers. By (3) and (4), we can solve for the optimal seller revenue in the auction with second chance offers, for each marginal cost pair \((c_1, c_2)\) with \(0 \leq c_1 \leq c_2 \leq 1\), by maximizing,

\[\Pi^{SCO}(r, p) = \frac{1}{2} - c_1 + (1 + c_1)r^3 - \frac{3}{2}r^4 - \lambda(1 - p)^2(c_2 + 2c_2p - 3p^2), \] (14)

subject to \(p = \max\{r, c_2\}\) and evaluating it at optimized \(r\). To trace out the solutions, start off with \(c_1\) fixed and consider \(c_2 = c_1\). From Corollary 3 we know that \(r = \psi^{-1}(c_1)\) and \(p = \max\{c_2, \psi^{-1}(c_1)\}\) maximizes (14). Note also that for the case of \(F\) uniform on \([0, 1]\), \(\psi^{-1}(c_1) = \frac{1+c_1}{2} > c_1\). Hence, the initial solution has \(r^* = \frac{1+c_1}{2}\) and \(p = \frac{1+c_1}{2}\).

Let

\[r^{**} = \arg\max_r \frac{1}{2} - c_1 + (1 + c_1)r^3 - \frac{3}{2}r^4 - \lambda(1 - r)^2(c_2 + 2c_2r - 3r^2). \] (15)

and let

\[r^+ = \arg\max_r \frac{1}{2} - c_1 + (1 + c_1)r^3 - \frac{3}{2}r^4 - \lambda(1 - c_2)^2(c_2 - c_2^2), \] (16)

where the latter maximization is subject to the constraint \(r^+ \leq c_2\). As \(c_2\) increases we have to compare revenue \(\Pi^{SCO}(r^{**}, r^{**})\) to \(\Pi^{SCO}(r^+, c_2)\). However, for any \(c_1 < c_2 \leq \frac{1+c_1}{2}\), we know that \(r^+ = c_2\) (since \(\Pi^{SCO}(r, c_2)\) is increasing in \(r\) up to its maximum at \(r = \frac{1+c_1}{2}\)). But, \((c_2, c_2)\) is a permissible solution to (15). Hence, \(\Pi^{SCO}(r^{**}, r^{**})\) is a valid solution for \(c_2 \leq \frac{1+c_1}{2}\).

Next consider \(c_2 > \frac{1+c_1}{2}\). Now we have to compare \(\Pi^{SCO}(r^+, c_2)\) to \(\Pi^{SCO}(r^{**}, r^{**})\) with
If $\frac{1+c_1}{2} < c_2 \leq r^{**}$ and $\Pi^{SCO}(r^{**}, r^{**}) \geq \Pi^{SCO}(r^+, c_2)$, then $\Pi^{SCO}(r^{**}, r^{**})$ is the solution. If $\frac{1+c_1}{2} < c_2 \leq r^{**}$ and $\Pi^{SCO}(r^{**}, r^{**}) < \Pi^{SCO}(r^+, c_2)$, then $\Pi^{SCO}(r^+, c_2)$ is the solution. Finally, if $r^{**} > c_2$, then $\Pi^{SCO}(r^+, c_2)$ is the solution.

References

